Curriculum for entrance exam (pre-medical)

BIOLOGY

- I. Chemical structure of living organisms
 - 1 General information
 - a) organic and inorganic components of organisms
 - b) biogenic elements (C, H, O, N, P, S) and their role
 - c) macro- and microelements and their role
 - d) role of water for living organisms
 - 2 Carbohydrates
 - a) mono-, di-, and polysaccharides examples
 - b) role of given carbohydrates (glucose, fructose, ribose, deoxyribose, sucrose, starch, glycogen, cellulose) for living organisms
 - 3 Lipids
 - a) structure and role of lipids
 - b) characteristics of basic lipids (phospholipids, glycolipids, wax, steroids)
 - 4 Proteins
 - a) structure of amino acids (general formula)
 - b) peptide bond
 - c) biological role of proteins
 - d) structure of proteins primary, secondary, tertiary, and quaternary
 - e) characteristics of some proteins (albumins, globulins, histones, metalloproteins)
- II. Structure and function of the cell
 - a) elements of the cell
 - b) comparison of eukaryotic and prokaryotic cell
 - c) cell membranes structure and role
 - d) plasmolysis in plant cell
 - e) structure and role of cell organelles (nucleus, mitochondria, chloroplasts, vacuole, endoplasmic reticulum, cytoskeleton)
 - f) cell movement
- III. Metabolism
 - 1 Enzymes
 - a) structure of protein enzyme
 - b) route of enzymatic catalysis
 - c) factors influencing enzymatic activity (temperature, pH, salt concentration)
 - d) methods of regulation of enzymatic activity (competitive and non-competitive inhibition, phosphorylation/dephosphorylation, activation of proenzymes)
 - 2 General metabolic rules
 - a) comparison of anabolism and catabolism
 - b) ATP as high-energy substrate
 - c) basic metabolic changes in animal and plant cell
 - 3 Intracellular respiration
 - a) major energetic compounds in the cell
 - b) comparison of aerobic respiration and fermentation energetic values
 - c) glycolysis, Krebs cycle- diagrams and placement inside the cell
 - d) respiratory chain and ATP synthesis
 - 4 Photosynthesis
 - a) description of photosynthesis
 - b) major pigments involved in photosynthesis

- c) substrates and products of photosynthesis
- IV. Diversity of living organisms
 - 1 Classification and identification of organisms
 - a) major taxonomic ranks and their hierarchy
 - b) phylogenetics and taxonomic classification
 - c) example of phylogenetic tree
 - 2 Viruses
 - a) basic elements of a virus
 - b) bacteriophage and its life cycle
 - c) major viral diseases in human (flu, measles, chickenpox, AIDS, hepatitis, rabies, rubella, mumps, polio) pathways of infection and prevention methods
 - 3 Bacteria
 - a) diversity of bacteria structure, mobility, nutrition (phototrophism, chemotrophism, heterotrophism)
 - b) cyanobacteria as example of oxygen assimilating bacteria
 - c) transmission of genetic material in conjugation process
 - d) role of bacteria in human life and in natural world
 - e) major bacterial diseases in humans (tuberculosis, dysentery, typhoid, cholera, anthrax, tetanus, lyme disease)
 - 4 Protista and primary water plants
 - a) movement of unicellular protista
 - b) different nutrition ways in protista
 - c) major algae groups (Phaeophyta, Rhodophyta, Chlorophyta, diatoms) as producers of organic matter
 - d) major protista diseases in humans (malaria, trichomoniasis, giardiasis, toxoplasmosis, amoebiasis)
 - 5 Land plants
 - a) characteristics of land plants enabling their life on land
 - b) characteristics of major plant groups (mosses, ferns, horsetails, lycopods, gymnosperms, angiosperms)
 - c) alternation of generations in various plant groups
 - d) role of plants in human life
 - 6 Structure of plant tissues and organs
 - a) major plant tissues (parenchyma, cambium, floem, xylem)
 - b) plant organs (root, stem, leaves) and their modifications
 - 7 Plant nutrition
 - a) mechanism of water and minerals transport in plants
 - b) gas exchange in plants
 - c) routes for photosynthesis substrates and products transport
 - 8 Plant reproduction
 - a) basic characteristics of ovule and seed
 - b) structure of flower in angiosperms
 - c) origin of male and female gametophyte, fertilization, seed development and germination
 - d) vegetative reproduction
 - 9 Plant reactions to stimuli
 - a) tropic and nastic movements (phototropism, geotropism, geonasty, nyctinasty)
 - b) plant hormones
 - c) photoperiodism
 - 10 Fungi

- a) basic characteristic of fungi differentiating them from other organisms
- b) symbiotic connections of fungi (including micorrhiza)
- c) lichens as examples of symbiosis and indicator organisms
- d) role of fungi in the industry (positive and negative)
- 11 Invertebrates
 - a) structure and lifestyle of sponges
 - b) characteristics specific for cnidaria, flatworms, roundworms, annelids, arthropods, mollusks, and echinoderms
 - c) parasite flatworms and roundworms examples of their life cycle
 - d) arthropods and their evolutionary success
 - e) incomplete and complete metamorphism of insects
- 12 Vertebrates
 - a) characteristics specific for fishes, amphibians, reptiles, birds, and mammals
 - b) reproduction and development of various vertebrate groups
 - c) role of vertebrates in natural world and human life
- V. Structure and function of human body
 - 1 Hierarchic structure of human body
 - a) tissues, organs, systems
 - b) structural and functional connections between organs and systems
 - 2 Skeleto-muscular system major structures and functions
 - 3 Gastrointestinal system general processes of digestion and absorption
 - 4 Respiratory system gas exchange and transport
 - 5 Cardiovascular system
 - a) structure and functioning of the heart
 - b) systemic circulation
 - c) pulmonary circulation
 - 6 Immune system general mechanism of immunity
 - 7 Urinary tract structure and mechanism of action
 - 8 Nervous system
 - a) structure of brain, spinal cord and nerves
 - b) transmission of information in the nervous system
 - c) role of brain in control and integration of body functions
 - 9 Senses
 - a) types of sensation in humans
 - b) eye structure and function
 - c) ear structure and function
 - d) smell and taste
 - 10 Endocrine system
 - a) classification of hormones
 - b) endocrine glands
 - c) hierarchy of hormone action (hypothalamus-pituitary-gland)
 - 11 Reproductive system
 - a) structure of male and female sex organs
 - b) origin and maturation of komórek rozrodczych
 - c) menstrual cycle
 - d) fertilization
- VI. Genetics and biotechnology
 - 1 Nucleic acids
 - a) structure of nucleotides
 - b) double helix and its role in DNA replication

- c) comparison of DNA and RNA
- d) types of RNA present in cell
- 2 Cell cycle
 - a) DNA organization in genome
 - b) phases of cell cycle
 - c) chromosome and characteristics of diploid organism
 - d) mitosis and meiosis comparison
 - e) sex inheritance
- 3 Genetic information and its expression
 - a) coding amino acids in DNA
 - b) transcription and translation
 - c) posttranslational modification of proteins
 - d) prokaryotic and eukaryotic genome comparison
- 4 Regulation of gene action
 - a) theory of operon
 - b) regulation of gene action in eukaryotics
- 5 Mendel's genetics
 - a) basic terminology of classic genetics (allele, recessive, dominant, locus, homozygote, heterozygote, genotype, phenotype)
 - b) Mendel's laws of inheritance (dominance, segregation, independent assortment)
 - c) Punnet square for on- and two-gene crossings
 - d) sex-conjugated genes
 - e) sex heritage in humans
- 6 Genetic variability
 - a) origin of variability (mutations, recombinations)
 - b) pleiotropy
 - c) mutations (point, insertion, deletion)
- 7 Genetic-based diseases in humans
 - a) gene-mutation based diseases (cystic fibrosis, phenylketonuria, hemophilia, daltonism)
 - b) chromosome-mutation based diseases (Down, Turner, Klinefelter)

VII. Ecology

- 1 Ecological niche
 - a) basic elements of ecological niche
 - b) organism tolerance for environmental factors changes
- 2 Population basic characteristics
- 3 Interspecific interactions
 - a) competition
 - b) predation
 - c) parasitism
 - d) mutualism
 - e) comensalism
- 4 Ecosystem
 - a) different ecosystems (terrestrial, water)
 - b) food chains and webs, examples
- 5 Energy and matter flow in nature
 - a) trophic levels (producers, consumers herbivores and carnivores, destruents)
 - b) examples of food chain
 - c) carbon circulation in nature
 - d) nitrogen circulation in nature

VIII. Evolution

- 1 Natural selection
 - a) sources of genetic diversity
 - b) mechanisms of action of natural selection
 - c) examples of adaptation of selected species to its living environment
- 2 Speciation
 - a) definition of species
 - b) mechanism of species origins
- 3 Anthropogenesis
 - a) similarities and differences between humans and apes
 - b) changes of humans during evolution
 - c) major fossil anthropoids

CHEMISTRY

- 1. Atoms, particles, and stoichiometry
 - 1. mole and Avogadro number
 - 2. chemical reactions products and substrates stoichiometry
- 2. Atom structure nucleus and electrons
 - 1. atomic orbital model (electron cloud)
 - 2. order of orbital (s, p, and d) and shell (K, L, M) occupation
 - 3. configurations of valence electrons
- 3. Chemical bonds
 - 1. stable electron configurations (ions)
 - 2. types of bonds (ionic, covalent polar and nonpolar, coordinate)
 - 3. hybridization types (sp, sp², sp³)
- 4. Chemical kinetics and statics
 - 1. basic definitions: exothermic, endothermic, activation energy
 - 2. factors influencing reaction rate (temperature, substrate concentration and granularity, catalyst)
 - 3. dynamic equilibrium and equilibrium constant
 - 4. Brönsted-Lowry theory of acids and bases
 - 5. pH, dissociation contant
- 5. Solutions and reactions in water solutions
 - 1. solution, colloid, and suspension definitions
 - 2. solution concentration molar and percent
 - 3. electrolytic dissociation
 - 4. pH indicators
 - 5. reactions of neutralization and hydrolysis
- 6. Oxidation and reduction reactions
 - 1. definitions: oxidation number, oxidizer, reducer, oxidation, reduction
 - 2. electron balance redox stoichiometry
- 7. Metals
 - 1. basic characteristics of metals
 - 2. example reaction with oxygen and acids
 - 3. hydroxides
 - 4. amphoteric characterisctics of aluminium oxide and hydroxide
 - 5. comparison of chemical activity of various metals
- 8. Nonmetals

- 1. chemical characteristics of nonmetals reactions with oxygen, hydrogen, and metals
- 2. acidic, basic, and neutral examples of oxides
- 3. acids comparison of oxoacids and anoxoacids
- 4. characteristics of acids reactions with metals, metal oxides, hydroxides, and weaker acid salts
- 5. oxidizing characteristics of acids
- 6. obtaining of salts
- 9. Hydrocarbons
 - 1. structure of hydrocarbons aliphatic and aromatic, saturated and unsaturated
 - 2. basic terms: homologous series, functional group, isomerism
 - 3. nomenclature of hydrocarbons
 - 4. chemical characteristics of aliphatic hydrocarbons burning, substitution, addition, elimination, polymerization
 - 5. chemical characteristics of aromatic hydrocarbons burning, reactions with halogens, nitration
- 10. Hydroxyl derivatives of hydrocarbons alcohols and phenols
 - 1. structure of alcohol and phenol
 - 2. alcoholic fermentation
 - 3. mono- and polihydroxyl alcohols (polyols) examples
 - 4. characteristics of alcohols burning, oxidizing, dehydration, reactions with inorganic acids and carboxylic acids
 - 5. primary and secondary alcohols examples
 - 6. differentiation between alcohols and phenols
- 11. Carbonyl compounds aldehydes and ketones
 - 1. differences between aldehydes and ketones
 - 2. obtaining of aldehydes and ketones
 - 3. Tollens and Trommer reactions for carbonyl compound determination
- 12. Carboxylic acids
 - 1. obtaining of carboxylic acids from alcohols and aldehydes
 - 2. oxidative and anaerobic fermentation
 - 3. reactions of carboxylic acids obtaining of salts and esters
 - 4. saturated and unsaturated fatty acids
- 13. Esters and fats
 - 1. structure of ester and ester bond
 - 2. reaction of esterification
 - 3. solid and liquid fats
 - 4. saponification of fats
- 14. Nitrogen containing organic compounds
 - 1. basic characteristics of ammonia and amines
 - 2. reactions of obtaining aliphatic and aromatic amines
 - 3. condensation of amino acids, and peptide bond
 - 4. hydrolysis of peptides
- 15. Proteins
 - 1. structure of proteins
 - 2. secondary structure (α, β) of proteins and hydrogen bonds importance
 - 3. tertiary structure of proteins and its stabilization by R- groups
 - 4. protein denaturation by temperature, acids, salts
- 16. Sugars
 - 1. mono- and polysaccharides

- 2. origin of monosaccharides
- 3. glucose and fructose comparison
- 4. comparison of starch and cellulose
- 5. hydrolysis of polysaccharides

PHYSICS

- 1. Linear motion and forces
 - 1. velocity
 - 2. force definition
 - 3. Newton's laws of motion
 - 4. gravity
 - 5. simple machines: lever, pulley, wheel and axle
 - 6. inertia and resistance
- 2. Energy
 - 1. different forms of mechanical energy
 - 2. work and power
 - 3. kinetic and potential energy
 - 4. law of conservation of energy
 - 5. connection between kinetic energy and temperature
 - 6. melting, solidification, condensation, sublimation, resublimation
 - 7. specific heat, melting point, and heat of vaporization
 - 8. convection of liquids and gases
- 3. Materia characteristics.
 - 1. differences in structure of solids, liquids, and gases
 - 2. crystal structure
 - 3. density
 - 4. surface tension
 - 5. pressure and hydrostatic pressure
 - 6. Pascal's law
 - 7. Archimedes' principle
- 4. Electricity.
 - 1. triboelectric effect (electrification by friction)
 - 2. electric charge and interactions of charges
 - 3. conductors and insulators
 - 4. flow of current
 - 5. voltage and amperage
 - 6. resistance and Ohm's law
- 5. Magnetism.
 - 1. permanent magnets and their poles
 - 2. electromagnet solenoid and core
 - 3. mechanism of action of electric engine
- 6. Oscillating motion and waves.
 - 1. pendulum movement and energy transition
 - 2. amplitude, period, equilibrium position of oscillating body
 - 3. waves amplitude, period and frequency, velocity and length
 - 4. sound as a wave, its velocity of traveling in different media
 - 5. factors determining loudness and pitch
- 7. Electromagnetic waves and optics.

- 1. spreading of electromagnetic waves comparison with mechanical waves
- 2. reflection, dispersion, and refraction of light
- 3. concentration and dispersion of light rays in convex and concave lenses
- 4. focus, focal length
- 5. images: real, virtual, upright, inverted, magnified, reduced
- 6. velocity of light
- 7. types of electromagnetic waves (radio, micro, infrared, visible light, ultraviolet,
- X-rays), examples of applications
- 8. Thermodynamics
 - 1. isobaric, isochoric, and isothermal processes
 - 2. first law of thermodynamics (adiabatic process)
 - 3. second law of thermodynamics (entropy)
 - 4. phase transition on the example of water
- 9. Atomic physics
 - 1. radiation of bodies
 - 2. structure of atom
 - 3. transition of electron between energy levels conservation of energy
 - 4. quantum number and Pauli exclusion principle
 - 5. Heisenberg uncertainty principle